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In this paper, an area matching approximation of histograms is considered under
constraints like convexity, monotonicity, or positivity. Using rational-lacunary
C 2·splines, sufficient conditions for the existence of convex, monotone, or positive
histosplines as well as algorithms for constructing them effectively are given.
Moreover, the existence criteria are shown to be satisfied for sufficiently large
rationality or lacunarity parameters. ,t 1993 Academic Press. Inc.

1. INTRODUCTION

Let a mesh A={xo,xl, ...,xn } with Xo<x l < ... <xn be given for the
interval [xo, xnJ, and let F= {fl' ...,fn} be a corresponding histogram, i.e.,
I; is the frequency for the interval [Xi-I' x;], where i = 1, 2, ... , n. The local
mesh spacing is denoted by h;=xi-x;_l' In addition let an integer k~ 1
be chosen.

In many practical applications it is of interest to have a Ck-function s
that satisfies the area matching condition

I
X;

s(x)dx=h;/;,
X,_l

i= 1,2, ..., n, (1.1)

and that, in addition, preserves the shape of the given histogram F. For
instance, the approximating function s should be convex, monotone, or
positive if the histogram is of this kind. Here, because it is appropriate, s
is assumed to be a spline function.

Shape preserving histopolation occurs in various applications. One
important field is statistics. Let F be a histogram which comes from a
finite sample with the observed frequency Ii in the class interval [X;-l' Xi)'
i = 1, 2, ..., n. Now, area matching splines can be taken as approximations
to the unknown density function of the underlying random variable. Here
constraints are usual. For example, an adequate approximation to the den­
sity of the exponential distribution has to be positive, monotone decreasing
as well as convex. In the case of the normal distribution, besides the
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positivity the histospline is desired to be concave in the central part of the
domain and convex elsewhere.

Another example of shape preserving histopolation appears in the
motion of a material point. Often the problem arises: How does one choose
the velocity s = s(x) as a function of the time x if it is required that the
point be in the positions gj at the times Xj' i=O, 1, ..., n? Because of

i = 1, 2, ... , n,

in F we have to set !j=(gj-gj_d/h j, i=I,2, ...,n. In general, the
positivity of the velocity is indispensable. We are led to the same model in
controlling the flow of a production. Here gj denote the output demanded
at the times Xj' i = 0, 1, ..., n.

In data interpolation, shape preservation by splines was treated recently
in several series of papers, such as [1-12], [14-16], [18-20], [22,23],
[25], and the book [27]. There are also some papers that are concerned
with shape preserving histopolation; here we refer to [13, 14, 17,20,24]
and again to the book [27]. In these references C I-splines are used. In the
present paper, shape preserving histopolation is considered by applying
smoother C 2-splines.

The paper is organized as follows. First, cubic splines are chosen to dis­
cretize the histopolation problems. In convex histopolation, the result is a
linear system of equalities and inequalities, while in monotone and positive
histopolation these systems are nonlinear. Next, by means of optimization
techniques, explicit existence criteria as well as algorithms for constructing
the desired spline solutions are given. Further, if solvable at all, the
histopolation problems under consideration have an infinite number of
solutions. Here we propose selecting the spline solutions with minimal
curvature. Finally, so-called rational-lacunary splines are treated in this
context. This class extends cubic splines and, moreover, if the histogram is
strictly convex, there always exist area preserving splines belonging to this
class which are convex; i.e., convex histopolation is always successful in the
class of rational-lacunary splines. We can derive the same property in
monotone as well as in positive histopolation. Some numerical examples
are given at the end of this paper.

2. DISCRETIZATION OF HISTOPOLATION PROBLEMS USING CUBIC SPLINES

With the local variables t = (x - X j _ d/h j , u = 1- t, a cubic spline scan
be defined for x E [x j _ I' x;] by

h2

s(x)=UYj_l +tYj-ut-t {(I +u)mj_l +(1 +t)m j}, i= 1, 2, ...,n. (2.1)
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As is well known, the requirement s'(xi-O)=S'(xi+O), i=1,2, ...,n-1,
leads to the C 2-condition

i = I, 2, ..., n - 1, (2.2)

and the parameters Yi and m i have the geometrical meaning

mi=s"(x;), i=O, 1, ..., n. (2.3 )

For cubic splines the area matching condition reads

Yi-l + Yi
2

i = 1, 2, ..., n. (2.4 )

Further, for discretizing convexity, monotonicity, and positivity, the
following proposition is important.

PROPOSITION 1. Let s be the cubic C 2-spline given by (2.1). Then s is

(i) convex on [xo, x n ] if and only if

mi~O, i = 0, 1, ..., n; (2.5)

(ii) monotone increasing on [xo, x n ] if and only if

n i ~ 0, i = 0, 1, ..., n,

i=I,2, ... ,n

(2.6)

with nj=(Y;-Yi_d/h;+hj(mj_l+2mj)/6,i=I,2, ... ,n, and with no=
(Yt - Yo)/h 1-h t(2mo+md/6;

(iii) nonnegative on [xo, x n ] if and only if

i = 1, 2, ..., n, (2.7)

where Pi =2Y;_1 +Yi- h7(2mi- 1+m;)/6, Yi =Yi-l +2Yi-h7(mi-1 + 2m;)/6,
and

X i = {(Yi-l' m i- 1, Yi, m i): Yi-l ~ 0, Yi ~ 0, Pi~O, Yi ~O},

Yi = {(Yi-l' mi - 1, Yj, mil : 4Yi-l Y: + 4YiP: + 27Y7_1 Y7 (2.8)

-18Yi-1YiPiYi-P7y7~0}.
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The conditions (2.5), (2.6), and (2.7) are straightforward consequences
of the following criteria for the nonnegativity of polynomials on fixed
intervals which are derived in Ref. [23].

PROPOSITION 2. We have

(i) a+bx+cx2~OforXE [0,1] if and only if

ex ~ 0, y~O, (2.9)

where ex = a, {3 = 2a + b, y = a + b + c;

(ii) a+bx+cx2+dxJ~OforXE [0,1] if and only if

(ex, {3, y, .5)EXU Y, (2.10)

where ex = a, {3 = 3a + b, y = 3a + 2b + c, .5 = a + b + c + d, and

X = {(ex, {3, y, .5) : ex ~ 0, {3 ~ 0, y ~ 0, .5 ~°},
Y = {(ex, {3, y,.5) : ex ~ 0, .5 ~ 0, 4ex},J + 4.5{33 + 27ex 2.5 2

- 18ex{3y.5 - {32y2~ O}.

(2.11 )

Note that (2.6) is equivalent to the well-known monotonicity criterion from
Ref. [8].

We are now in a position to formulate the following intermediate results.
The problem of convex histopolation is solvable with cubic C 2-splines if
and only if there exist numbers Yo, mo, ..., Yn' mn that satisfy the linear
finite system (2.2), (2.4) under the sign condition (2.5), and, via (2.1), any
solution of this system yields a convex histospline. Analogously, the
solvability of the finite systems (2.2), (2.4), (2.6) and (2.2), (2.4), (2.7)
ensures the existence of monotone and positive cubic C 2-spline
histopolants, respectively. However, these systems are nonlinear. The
cumbersome conditions (2.6) and (2.7) can be replaced by linear inequalities
by sharpening them. For example,

is sufficient for (2.6), and

i=1,2, ... ,n (2.12)

Yi-l ~O, Yi~O, Yi~O, i= 1, 2, ... , n (2.13)

for (2.7). If the histospline is required to be convex as well as monotone
increasing, then we need only add to (2.2), (2.4), (2.5) the one linear
inequality

'( ) YI-YO hl (2 ) ..... 0s Xo = -6 m o + m 1 ;::::; •
hI

(2.14 )
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Finally, we mention the case in which the histospline s is required to be
convex on some subintervals [Xi-I, X;], iEII> and concave on other
subintervals [Xi_I,X;], iE12 • Then we have to complete (2.2), (2.4) by

and

3. EXISTENCE CRITERIA IN CONVEX HISTOPOLAnON

VIA LINEAR PROGRAMMING

With (n - 1) x (n + 1) band matrices A, B of width 3 and n x (n + 1)
band matrices C, D of width 2, the system (2.2), (2.4), (2.5), which is
fundamental in convex histopolation, can be written as

Am=By, Cm+Dy=f, m~O. (3.1 )

The vectors of unknowns are y = (Yo, ..., Yn)T and m = (mo, ..., mn)T.
Without loss of generality we can assume that f ~ O. In monotone and
positive histopolation, for the condition m ~ 0 in (3.1) we have to sub­
stitute the nonlinear but convex inequalities (2.6) and (2.7), respectively.

To treat the solvability of the system (3.1), we introduce vectors of
artificial variables v = (VI' ... , Vn_1)T and W= (w l , ... , Wn)T and consider the
linear program

minimize Z = VI + ... + Vn _ 1 + WI + '" + W n

subject to Am - By + V = 0, Cm+Dy+w=f, m ~ 0, v ~ 0, W ~ O.

(3.2)

Since f ~ 0, there is an initial basic feasible solution, so the simplex method
can be started immediately. As is well known, the program (3.2) is always
solvable, and the system (3.1) is consistent whenever the optimal value Zmin

of (3.2) is equal to zero. Thus, there are convex area matching cubic
C 2-splines to the given histogram F if and only if Z min = 0, and then any
optimal basic solution of program (3.2) gives a convex histospline.
Analogous existence criteria can be formulated in monotone and positive
histopolation, but now by means of nonlinear convex programs. In
implementing this line of reasoning numerically, the question arises: How
does one exploit the special structure of the program (3.2), i.e., the
structure of the matrices A, B, C, and D?

3.1. Decoupling of System (3.1)

As a first step, in system (3.1) the vector y is eliminated to reduce the
dimension. To this end, substitute the variables Yi-l and Yi+ 1 in (2.2) by
using (2.4). The result is

64On5,'J-7
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i = 1, 2, ..., n - 1.

SCHMIDT AND HEI3

(3.3 )

Next, with Yi-l from (3.3), equality (2.4) yields

'=2'- hi-1fi+h;/;-1
}':/I h. +h.

1- L I

i= 2, ..., n.

Thus, (3.3) and (3.4) lead to the following system in m only,

(3.4 )

where we use the abbreviations

i= 2, ... , n -1, (3.5 )

b=3h 2h;+3hi+ 1 h
I ,-I + h.+h "

I 1+ 1

3hi _ 1+ 2hi
ci=3hi+ 1 + h h hi'

;-1 + i
(3.6)

This system (3.5), (2.5), which characterizes convex histopolation, can be
written as

Em=e, m~O, (3.7)

where E is an (n - 2) x (n + 1) band matrix of width 4. As described before,
the method of artificial variables yields a necessary and sufficient condition
for the consistency of the system (3.7). But it is also of interest to utilize the
structure of matrix E in solving the corresponding linear program.

3.2. A Linear Program with a Bordered Diagonal Matrix

As a second step, the system (3.7) is slightly modified. Let E be an
(n - 2) x (n - 2) submatrix of E built, e.g., by dropping the first, second,
and last columns,

C2 d2 0

b 3

E= a 4 (3.8 )

dn - 2

0 an-I bn _ 1 Cn - 1
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For non-singular E, the system (3.7) is equivalent to
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Gm=g, (3.9)

Here G is a bordered diagonal matrix,

(3.10)

and without loss of generality we can assume that g ~ O. Introducing the
vector w=(wt> ... ,Wn _2)T of artificial variables we are led to the linear
program

minimize Z = WI + '" + W n _ 2

subject to Gm + W = g, m~O, W~O,

(3.11 )

which yields the following existence criterion.

PROPOSITION 3. For a given histogram F, the problem of convex
histopolation is solvable lvith cubic C 2-splines if and only ~f

Zmin =0, (3.12)

M,'here Zmin denotes the optimal value of the program (3.11). Moreover, any
optimal basic solution of (3.11 ) yields a convex histospline.

Because of g ~ 0, the simplex method starts directly by solving (3.11).
Moreover, by this method the structure of the matrix G can be completely
exploited. Therefore, it is possible to solve the program (3.11) very effectively.
In addition, the computation of G and g that are required to formulate
(3.11) can be performed rapidly if E is LU-factorized. Let

0

)'3 ["
d2

d.°,JL= J1.4 U= (3.13 )

0 Vn _ I

0 J1.n-1 A. n _ I

Then Land U are determined as follows:

(3.14 )
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For jE {I, 2, n + I}, denote by '1 = ('12' ..., '1n_I)T the jth column of E or e,
and by (=«(2'''''(n_I)T the jth column of G or g, respectively. Then
( = l- 1'1 is computed by

t2= '12' t3= '13 - )'3 t2and for i = 4, ..., n - I: t; = '1; - jJ.J;~ 2- A;t; _ I' (3.15)

(n_l=tn_ 1/l'n_ I andfori=n-2, ...,2:C=(t;-d;C+d/I';. (3.16)

Thus, to formulate the essential program (3.11), it suffices to apply the
formulas (3.6), (3.14), (3.15), and (3.16). Note, however, that because
of the dependence on the step sizes hI' ..., hn , partial pivoting may be
necessary when factorizing l. In this case, U becomes a band matrix of
maximal width 4 while the width of L is unchanged.

3.3. Stability Considerations

It seems to be difficult to analyze the procedure described above for
general step sizes. Hence we now consider the case h; = h, i = 1,2, ..., n. The
system (3.5) then reduces to

i= 2, ... , n - I, (3.17 )

i. e., a; = d; = I and b; = c, = II. From (3.14) it follows that

II
1'2= II, 1'3= 10 and for i=4, ... , n-I: 1';= ll---+--­

1';_11';_11';_2

This recursion formula is equivalent to

. 111';_1 - I
1'2 = 11 and for 1= 3, ..., n - I: 1'; = ,

1';_1 + I

by means of which we immediately get

1'2> 1'3 > ... > I'n-l > \1* = 5 +fl ~ 9.899.

(3.18 )

(3.19 )

(3.20)

(3.21 )

In view of this estimation, l turns out to be non-singular for constant step
sizes. Note that for arbitrary step sizes non-singularity of l need not
always occur.

Next, using (3.14) and (3.19), formula (3.15) is easily reformulated as

t;+(1 +_1_) t;_1 +_1_ 1;_2='1;.
1';_2 1';_2
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If Vj _ 2 is approximated by v*, the zeros of the characteristic equation
corresponding to (3.21) are -1 and -ljv* = -0.101. Hence, the recursion
relation (3.15) is seen to be stable. Analogously, the stability of (3.16)
follows.

The stability of the procedure described above depends in an essential
way on the choice of the submatrix E of E. If, in contrast to the scheme
proposed above, the first three columns of E are dropped in the construc­
tion of E, then factorization becomes superfluous, i.e., L = E and U = 1.
Instead of (3.21) we then would have

(3.22 )

But this recursion formula is unstable, at least for large n, because
- 5 - )24:::::: -9.899 is a zero of the corresponding characteristic equation.

4. CONVEX HISTOSPLINES WITH MINIMAL CURVATURE

If the existence criterion Zmin = 0 of Proposition 3 is satisfied, then the
problem of convex histopolation considered above is solvable, but in
general not uniquely. Thus the question of how to select one of the spline
histopolants arises. Here we propose to use the L 1 -norm of a simplified
geometric curvature

NI(s) = r" Isl/(x)1 dx
'<0

as an objective function. Hence, we consider the linear program

minimize N1(s) = cTm

subject to Gm = g, m ~ 0,

where G and g are defined in (3.9) and where c is computed to be

c=! (hi' hi +h2 , ••• , hn_ 1 +hn, hn)T.

(4.1 )

(4.2)

(4.3 )

The linearization (4.1) of the geometric curvature can be improved if good
approximations 't j to s'(x) for x i _ I ~ X ~ Xi are known. Then, only in
formula (4.3) one has to substitute h;/( 1 + ,;)3/2 for hi' i = 1, 2, ..., n.

Note that the linear programs (3.11) and (4.2) can be solved con­
secutively. As is well known, in the first phase of the simplex method for
the program (4.2), one has to solve the program (3.11). The program (4.2)
is feasible whenever Zmin = 0 in (3.11), and an optimal basic solution of
(3.11) then yields an initial feasible basic solution to the program (4.2).
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We remark that the Lrnorm of the curvature leads to a quadratic
program while the Lex. -norm gives a linear one. But the structure of the
later program is more complicated than that of the program (4.2).

5. RATIONAL-LACUNARY SPLINES IN SHAPE PRESERVING HISTOPOLATION

The convexity test (3.12) in Proposition 3 may fail when cubic C 2-splines
are used. Therefore, we are interested in extended splines that allow one to
preserve convexity for suitable choices of additional parameters.

Let Pi ~ 0, q, ~ 0 be real numbers and k, ~ 2, I, ~ 2 integers, i = 1,2, ..., n.
Then, using the local variables t and u, we define for x E [x, I' xrJ,

s(x)=Uy· I+ty+(~-u)p.
• J • , 1+ p;l J

+(_t_"__ t) a" i=I,2, ...,n. (5.1)
1+ q,u

These splines s are called rational-lacunar. Obviously, for k, = I; = 3, Pi =
q, = 0 the splines become cubic. In the case k i = I; = 3, p, ~ 0, q, ~ 0, we get
the rational splines introduced in [26] while for Pi = q i = 0, k, ~ 3, I; ~ 3 the
lacunary splines from [10] are obtained. Also, the rational splines used in
[9] are contained in (5.1); one sets k,=1;=2, p,=q,>O, and in the limit
p,-+O, i= I, 2, ... , n, one is led to cubic splines; see subsection 5.2.

The second derivative of the spline (5.1) is computed to be

" _k,(k,-I)(I + p,t)2 + 2k,p,u(1 + P;t)+2p~u2 Uk, 2Pi

S (x) - h~(1 + Pit))

1,(1;-1)(1 +q,u)2+2/iq,t(1 +q,u)+2q~t2 '2 (5.2)+ t' a,.
h~(1 +q,U)3

To determine PI' a I' ... , P,,, all such that s"(x;) = m, holds for i = 0, I, ..., n,
we consider the cases k, ~ 3, Ii ~ 3, i = I, 2, ..., n, and k, = I; = 2,
i = I, 2, ... , n, separately.

5.1. Convex Histopolation: The Case ki~3, 1,~3, p,~O, qi~O

We introduce the abbreviations

(5.3 )

In the case treated in this section, we obtain from (5.2)

h~m,
(Ji=~' i = I, 2, ... , n, (5.4 )
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Y;+I- Y;

h;+ 1

Y;- Y;-I

h;
i = 1, 2, ..., n - 1. (5.5 )

The area matching condition is reformulated as

Y; - I + Y; 2A; - 1 h2 2B; - 1 h2 _ r
2 + 2({); jm j - 1 + 21jJ; jmj-Jj,

where

i= 1,2, ... , n, (5.6)

(5.7)
A;=I(k;,p;), B;=I((,q;),

I(k,P)=f
l

(l-t)k dt=(I~:r{ln(l+p)-±~(-IP)K}.
o 1+ pt P K = 1 K + P

Furthermore, since ((); > 0, l/J; > 0, it is easily established by means of (5.2)
and (5.4) that

m;~O, i =0, 1, ..., n (5.8)

is a necessary and sufficient convexity condition for the rational-lacunary
splines (5.1).

Thus, in convex histopolation with rational-lacunary splines, we con­
sider the linear system (5.5), (5.6), (5.8), which is of the type (2.2), (2.4),
(2.5). Therefore, we can proceed as described before. After eliminating
Yo, ..., Yn in (5.5), (5.6) we get a system of the form (3.5), and it is of
interest to have explicit expressions for the coefficients. These expressions
are

24A;_l h7_1
a·= ,

I ({);_I(h;_1 + h;)

b
_ (2B; - I + r; - 1 - 1 h 2A; + X; - 1 h) 12h; - 1

;- ;-1 + ;
l/J;-I ({); h;_l+h;

(1 - 2A;) h; + (1 - A ;) h; + 1 24h.
+ h ) "({);( ;+h;+1

_ (2B; + r; - 1 h 2A; + 1 + X; + 1 - 1 h ) 12/z; + 1
c- .+ "+1

I l/J; I ({);+I I h;+h;+\

(l - B;) h;_ 1 + (l - 2BJ h; 24h
+ l/J;(h;-l+h;) "

(5.9)
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(5.1 0)

while ei is unchanged. Finally, in the present case the vector c in the
program (4.2) reads

(
XI+ 1 '1+1 X2+ 1

c= --hl'-.I,-h, +--h2, ...,
(fJ1 'f'1 (fJ2

'n- 1+ 1h Xn + 1h 'n + 1h )T
,I, n- 1 + n' .1, n'
'Yn-l ({JIJ IfIn

5.2. Convex Histopolation: The Case k i=l;=2, Pi~O, qi~O

Under these assumptions the spline (5.1) satisfies s"(x.) = mi , i = 0, 1, ..., n,
if

_ 1+ Pi (1 + PY mi_l - m i h2
Pi- 2 (l+pi)6-1 i'

a=I+Pi(I+PiPmi-mi-lh2
I 2 (l+pi)6-1 I'

i = 1,2, ..., n.

(5.11 )

At this point, the condition Pi> 0, i = 1, 2, ..., n, is necessary. But using, e.g.,
the substitution ri = p;/(l + p.), we see in a straightforward way, using

(1 + p.)6 - 1 = (1 + p;)2 (2Pi + p;)( 1 + ri)(3 + r.),

(1 + Pit)( 1 + Piu) = (1 + Pi)( 1 + r;tu ),

(1 + PY (1 + PiU) - (1 + p;t) = (l + pi)(2pi + p;)( 1 + (l + ri)u),

that the spline (5.1) can be written on [x i _ 1> x;] as

( )
_ h2(l+(I+ri)u)mi-l+(I+(l+r;)t)mj

s x - uy . 1 + tY .- ut . ----'----'---'---'--"----'----'----'-'-
1- I I 2(I+r.)(3+r.)(l+r;tu) ,

i = 1, 2, ... , n. (5.12 )

Note that this representation has no singularity for ri = O.
It is convenient to note that convexity with the C 2-splines (5.12) is also

described by a linear system (5.5), (5.6), (5.8). Now we have to define

(5.13 )

_~+ 2(3+r) In(fi + Jr+4)
2r r J r2 + 4r 2 2 '

and these definitions are also of interest for (5.9) and (5.10).
Thus, the procedures outlined in Sections 3 and 4 apply directly to

convex histopolation with splines of the type (5.1), (5.4) as well as of the
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type (5.12), if the parameters Pi' qi' k j , Ii, r i , i= 1, 2, ..., n, are assumed to
be fixed.

5.3. Existence of Convex Histoplines for Large Parameters

A histogram F on the mesh L1 is said to be in convex position if there exist
area-true linear CO-splines on L1 which are convex, i.e., if the system for
Yo, ..., Yn

Yi-l + Yi I.
2 j"

i= 1,2, ..., n,

i = 1, 2, ..., n - 1

(5.14 )

(5.15 )

is solvable. For strict inequalities in (5.15), the histogram is called strictly
convex. In this case there exists a vector y* = (Yd, ..., y:)T with

Dy* =f,

where Band D are band matrices,

By* >0, (5.16)

B=

To reformulate (5.5), (5.6), we introduce the band matrices

(5.17 )

(5.18 )
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and we have
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A(r) --+ A*, for r --+ 00. (5.19 )

If we assume for simplicity that

i=1,2, ... ,n (5.20)

then the linear equations (5.5), (5.6) can be written as

(5.21 )

where Mlr) = m(r)/(5r + 6).
Let A* be the submatrix of A * which is obtained by dropping the first

and last columns; analogously define A(r) and e(r'. To obtain iJ, drop the
first column in D; analogously define 8. Now form the block matrix

__lJ]
D,

(5.22)

which is immediately seen to be non-singular. Thus, in view of (5.19), the
matrices

(5.23 )

are non-singular whenever r is sufficiently large. Therefore, system (5.21) is
solvable for large r, say by (i r), M(r) with y~) = ycf, M~) = M~) = 0, and
we obtain ir)~y*,A*M(r)~By* for these r. Because of (5.16), this
implies that M (r) ~ 0, and hence m(r

j ~ O. Thus, we have shown that the
systems (5.5), (5.6), (5.8) are solvable if, under the assumption (5.20), the
real number r is sufficiently large. We remark that the same property holds
true if instead of (5.20), for instance,

or

k i = I; = constant ~ 2, Pi=qi=r, i = I, 2, ..., n (5.24)

Pi = qi = constant ~O, k;= li= 3 + r, i=I,2, ...,n (5.25)

are assumed. We summarize these considerations as follows.

PROPOSITION 4. Let the histogram F he strictly convex. Then there are
parameters Pi' qi' k j , Ii' r;, i = 1,2, ..., n, such that the area preserving
C 2-spline (5.1) with (5.4) or (5.11) is convex.
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5.4. Existence of Positive Histosplines for Large Parameters

In order to extend the preceding proposition to positive and monotone
histopolation, we only consider the rational splines (5.12). As mentioned
before, in this case the C 2 condition and the area matching condition are
described by the linear systems (5.5) and (5.6) if the parameters are defined
by (5.13). Next, positivity conditions are derived. To this end, substitute
t=O'/(1 +0') in (5.12). Then, s(x)~O for Xi_I ~X~Xi is easily seen to be
equivalent to

for 0' ~ 0 (5.26 )

with

h;((2 + r i ) m i - 1+ m,)
fJi=(2+ri)Yi-I+Yi- 2(1+r

i
)(3+r

i
) ,

h;(m i _ 1 + (2 + r,)m,)
}'i=Yil+(2+ri)Yi- 2(1+r

i
)(3+r

i
) .

Thus the linear inequalities

(5.27)

Yi ~ 0, i = 0, 1, ..., n, fJ i ~ 0, Yi ~ 0, i = 1, 2, ..., n (5.28 )

are sufficient for the positivity of the spline (5.12) on [xo, xnJ.
Now, a histogram F on L1 is defined to be in positive position if there exist

area-true linear CO-splines on L1 which are positive, i.e., system (5.14) has
solutions with

Yi~O, i = 0, 1, ..., n. (5.29)

For strict inequalities in (5.29), the histogram is said to be strictly positive.
In this case, there exists a vector y* = (y,t, ..., y:)T with

Dy* =f,

Here the definitions (5.17) are used.
Under the assumption

ri=r,

y*>O.

i = 1, 2, ... , n,

(5.30 )

(5.31 )

we reformulate the conditions of positive C 2-histopolation, namely (5.5),
(5.6) with (5.13), and (5.28). We set y(r) = (y~), ... , y~;I)T and M(r l =
(M~I, ...,M~»)=m(r)/(12+4r). Then, using the abbreviations A*, B, D,
Rl r ), and clr) from (5.17) and (5.18) we get
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(5.32 )

(r) 2h 2 ( M(r))y(r) +~ i M(rl +-;- ~O
,-I 2+r l+r ,-I 2+r

ylr) + y~'21 _ 2h; (M(r1 + Mj'2 1) ~ 0 . 1 2
I 2 + r 1+ r I 2 + r ' 1 = , , ..., n,

(5.33)

where A(r)=2(2+Ir)/(I+Ir)A*+2R(r), and Cl r
) is to be replaced by

2C (r). Since the matrices (5.23) are non-singular for sufficiently large r,
the systems (5.32) are solvable, say by (y(rl, M(r») with y~) = y~ and
M~) = M~) = O. Further, by standard arguments, we obtain ylr) ~ y*. In
view of (5.30) this implies the validity of (5.33) whenever r is large enough.
Thus we have proved the

PROPOSITION 5. Let the histogram F be in strictly positive position. Then,
for sufficiently large parameters ri = r, i = 1,2, ..., n, the area matching
C 2-splines (5.12) are positive on [xo, x n ].

5.5. Existence of Monotone Histoplines for Large Parameters

Paralleling the preceding developments, we now discuss the monotone
histopolation with C 2-splines of the type (5.12). First, we mention that
s'(x) ~ 0 for x,_ I:::::; X:::::; Xi is equivalent to

for (J" ~ 0 (5.34 )

with

Yi-Yi-I hi((2+r;)m;_I+m;)
C( . = :....:....---:..-'--.:..

, h; 2(1 + r;)(3 + r;)

f3. = (2 + r) Y; - Y;- 1_ h;(m;_1 + (2 + r;)m;)
I I h, 2(I+r;)(3+r;) '

(2 )2Y;-Y;-1 hi ( )
}';= +r; h. +2" m;_I-m;,,

J: -(2 )Y;-Y;-I hi((2+r;)m;_I+m;)
u - + r + -'----'---'--'----'-

, I hi 2(I+r;)(3+r;) '

Y; - Yi-I h;(mi_1 + (2 + r;)m;)
L;= + .

h; 2(1 + r;)(3 + r;)

Hence, a sufficient monotonicity condition reads

(5.35 )

}'i~O, i= 1, 2, ... , n, (5.36)
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and, under the assumption (5.31), the system (5.32) now has to be
completed by

2h 2

Y i - Y i-I - (l + r )(~ + r) (Mi-I + (2 + r) M i) ~ 0,

2h;(3 + r)
Yi-Yi-l+ (2+rf (Mi_I-M;)~O,

2h 2

Yi- Yi-I + (l +r)(2+r) «(2+r)Mi_ 1 +Mi)~O,

2h 2

Yi-Y,-l+-
I
-' (Mi_I+(2+r)M;)~0,
+r

(5.37)

i = 1, 2, ..., n.

A histogram F on L1 is defined to be in strictly monotone position if
system (5.14) possesses solutions with

Yi- Yi-l >0, i = 1, 2, ..., n. (5.38)

Hence, there exists a vector y* which satisfies

Dy* = f, i= 1,2, ..., n. (5.39)

In addition, there is a vector M* = (M t, ..., M :)T with the property

A*M*=By*,

and M 6, M -: can be chosen according to

(5.40 )

(5.41 )

The system (5.40) leads to

V*-Y'* v* -y'*
J i i-I + 2h. M * = f i + I i _ 2h. M *

hi I I h
i
+ 1 r+ 1 "

which, in view of (5.39), implies

i = I, 2, ..., n - 1,

y,* - Yf-I +2h;M;* > 0,

Yf+ 1 - Y;* - 2h;+ 1 M i* > 0, i = 1, 2, ..., n - l. (5.42 )

Now, because of the non-singularity of the matrices (5.23), the systems
(5.32) are solvable for sufficiently large r, say by (ylr), Mlr»), where we can
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assume that y~)=y3', M~)=M3', and M~)=M:. Continuity arguments
yield i r}~ y* and Mlr, ~ M*. Therefore, considering (5.41) and (5.42), we
see that the monotonicity condition (5.37) is satisfied for large r. Thus, we
have shown the

PROPOSITION 6. Assume that the histogram F is strictly monotone. Then
the area matching C 2-splines (5.12) are monotone on [xo, x,,] if the
parameters r; = r, i = 1, 2, ..., n, are sufficiently large.

6. COMPUTATIONAL COMMENTS

In a first example we consider the histogram F= {I, 2, M} on A =
{O < 4 < 6 < 7}, which is in convex position exactly when M ~ 2.5. For
these M, convex area matching approximation is possible with cubic
C 2-splines. For M = 4, Fig. I shows the spline which minimizes the
simplified curvature (4.1). The spline shown in Fig. 2 is convex, but (4.1)
is not minimal. Obviously, the first spline should be preferred.

The second histogram F= {M, 1,0.5,1,2, M} given on A = {O< 1 < 2 <
4 < 6 < 7 < 8} is in convex position if M ~ ~. In this example convex
histopolation is not always successful when cubic C 2-splines are used. We
found that the cubic C 2-splines are suitable for M ~ 2.8 but not for
M ~ 2.7. Now, near the limit value M = ~ rational-lacunary C 2-splines
(5.1) can be taken. For fixed k; = I; = 3, i = I, ... , n, the smallest integers
p = Pi = q;, i = 1, ..., n, are determined by a simple search procedure such
that the convexity criterion Z min = 0 described above is satisfied. In this
way, we obtain the table

M

P

4

o

3

o

y

2.8

o

2.7 2.68

4

2.67

14

2.6667

250

FIG. 1. Convex cubic C 2-histospline with minimized curvature (4.1).
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y

Xo X, Xz xJ

FIG. 2. Convex cubic C 2-histospline; curvature not minimized.

y

Xo Xl Xz XJ XI; X5 X,

FIG. 3. Convex rational C 2-histopline For M = 2.8

y

FIG. 4. Convex rational C 2-histospline For M = 2.7

343
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y

r. ­

~

FIG. 5. Convex rational C 2-histospline for M = 2.68.

Figures 3-5 show the rational area matching C 2-splines which belong to
the values M = 2.8, M = 2.7, and M = 2.68.

Finally, let us remark that also the convex histosplines (5.1) become
unsatisfactory for M very close to the limit value ~. In these cases, it is
recommended that one change to a least-squares model; see, e.g., [21].
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